Задачи По Эконометрике В Excel

Posted on

Основные определения и формулы При построении эконометрической модели используются два типа данных: 1) данные, характеризующие совокупность различных объектов в определенный момент времени (пространственные модели); 2) данные, характеризующие один объект за ряд последовательных моментов времени (модели временных рядов). Временной ряд (ряд динамики) – это совокупность значений какого-либо показателя за несколько последовательных моментов или периодов времени. Каждый уровень временного ряда формируется. Эконометрика – совокупность методов анализа связей между различными экономическими показателями (факторами) на основании реальных статистических данных с использованием аппарата теории вероятностей и математической статистики. При помощи этих методов можно выявлять новые, ранее не известные связи, уточнять или отвергать гипотезы о существовании определенных связей между экономическими показателями, предлагаемые экономической теорией. Основной проблемой эконометрики является построение и оценка эконометрической модели с точки зрения возможности ее использования для описания, анализа и прогнозирования реальных экономических процессов. Настоящее учебное пособие предназначено для студентов экономических специальностей всех форм обучения, поскольку овладение знаниями по компьютерному моделированию является обязательным элементом изучения эконометрики.

Aug 4, 2011 - В данном файле, приводится решения двух задач по дисциплине эконометрика. Примеры взяты из двух тем:-парная множественная регрессия-парная линейная регрессиястраниц:16Год: 2010. Решение задачи по эконометрике в Excel с помощью надстройки 'Анализ данных. Видеоурок по решению этой задачи в Excel вы можете посмотреть. Практикум по эконометрике.

Целевое назначение данного пособия заключается в формировании у студентов практического использования теоретических основ эконометрического моделирования в задачах анализа ситуаций экономической реальности, а также обоснования прогнозных решений. Для работы с пособием необходимы базовые знания некоторых разделов следующих учебных дисциплин: высшая математика, теория вероятностей, математическая статистика, общая теория статистики, экономическая теория. Пособие содержит краткий теоретический материал по основным темам курса, методические указания, примеры решения типовых задач, статистические таблицы и не может заменить собой полноценного курса лекций по предмету. Выполнение типовых задач рассмотрено как «ручным» методом с помощью формул, так и в среде табличного процессора Excel. Это позволяет, с одной стороны, «прочувствовать» все детали и тонкости изучаемых методов, что естественным образом повышает уровень усваиваемости учебного материала, а с другой – совершенствует навыки работы в пакете Excel. Эффективной является работа с данным пособием в сочетании с самостоятельным разбором примеров с использованием доступного программного обеспечения (пакета электронных таблиц Excel, в котором имеются простейшие операции для проведения эконометрического анализа). Это позволяет снизить трудоемкость работы студентов и сконцентрировать усилия на постановке задачи, выборе соответствующей модели, метода ее решения, интерпретации полученных результатов.

Курс эконометрики призван научить различным способам выражения связей и закономерностей через эконометрические модели и методы проверки их адекватности, основанные на данных наблюдений. Эконометрический подход характеризует также внимание, которое уделяется в нем вопросу соответствия выбранной модели изучаемому объекту, рассмотрению причин, приводящих к необходимости пересмотра модели на основе более точной системы представлений. Эконометрика занимается, по существу, статистическими выводами, т.е.

Использованием выборочной информации для получения некоторого представления о свойствах генеральной совокупности. Цели изучения дисциплины «Эконометрика»:. ознакомление с основными понятиями и методологией эконометрики;. овладение совокупностью эконометрических методов исследования, необходимых для проверки, обоснования, оценивания количественных закономерностей и качественных утверждений (гипотез) в микро- и макроэкономике на основе анализа статистических данных;. обучение эконометрическому моделированию, т.е. Построению экономико-математических моделей, параметры которых оцениваются средствами математической статистики;. обучение эмпирическому выводу экономических законов;.

овладение практическими навыками в построении эконометрических моделей при изучении экономических явлений и процессов с использованием компьютерных технологий. Для освоения курса «Эконометрика» студентам необходимы знания учебных курсов «Теория вероятностей и математическая статистика», «Линейная алгебра», «Микроэкономика», «Макроэкономика». Студент будет иметь представление:. об основных эконометрических инструментах, методах и способах их обработки и реализации;. о некоторых видах нелинейных моделей и специальных методах эконометрического анализа и оценивания;. о тенденциях современного развития эконометрики. Студент будет знать:.

Диаграммы В Excel

основные методологические подходы и приемы изучения экономических процессов;. методы корреляционного, дисперсионного, регрессионного, последовательного, факторного анализа, применяемые для построения различных эконометрических моделей;.

степень и характер влияния отдельных факторов на экономические показатели. Студент будет уметь:. применять общие и специальные методы экономических и статистических расчетов;. владеть методикой сбора, обработки экономической информации и прогнозировать состояние и развитие экономических процессов;. строить эконометрические модели и оценивать их параметры для объяснения поведения исследуемых экономических явлений;.

содержательно интерпретировать формальные результаты, моделировать с помощью современных компьютерных технологий;. проверять выдвигаемые гипотезы о свойствах экономических показателей и формах их связи.

Диаграмма ганта в excel

Номер региона Среднедушевой прожиточный минимум в день одного трудоспособного, руб., х Среднедневная заработная плата, руб., у 1 78 133 2 82 148 3 87 134 4 79 154 5 89 162 6 106 195 7 67 139 8 88 158 9 73 152 10 87 162 11 76 159 12 115 173 Задание: 1. Постройте поле корреляции и сформулируйте гипотезу о форме связи. Рассчитайте параметры уравнения линейной регрессии. Оцените тесноту связи с помощью показателей корреляции и детерминации. Дайте с помощью среднего (общего) коэффициента эластичности сравнительную оценку силы связи фактора с результатом. Оцените с помощью средней ошибки аппроксимации качество уравнений. Оцените с помощью F-критерия Фишера статистическую надёжность результатов регрессионного моделирования.

Рассчитайте прогнозное значение результата, если прогнозное значение фактора увеличится на 10% от его среднего уровня. Определите доверительный интервал прогноза для уровня значимости. Оцените полученные результаты, выводы оформите в аналитической записке. Решение: Решим данную задачу с помощью Excel. Сопоставив имеющиеся данные х и у, например, ранжировав их в порядке возрастания фактора х, можно наблюдать наличие прямой зависимости между признаками, когда увеличение среднедушевого прожиточного минимума увеличивает среднедневную заработную плату.

Исходя из этого, можно сделать предположение, что связь между признаками прямая и её можно описать уравнением прямой. Этот же вывод подтверждается и на основе графического анализа.

Чтобы построить поле корреляции можно воспользоваться ППП Excel. Введите исходные данные в последовательности: сначала х, затем.

Задачи По Эконометрике В Excel

Выделите область ячеек, содержащую данные. Затем выберете: Вставка / Точечная диаграмма / Точечная с маркерами как показано на рисунке 1. Рисунок 1 Построение поля корреляции Анализ поля корреляции показывает наличие близкой к прямолинейной зависимости, так как точки расположены практически по прямой линии.

Для расчёта параметров уравнения линейной регрессии воспользуемся встроенной статистической функцией ЛИНЕЙН. Для этого: 1) Откройте существующий файл, содержащий анализируемые данные; 2) Выделите область пустых ячеек 5×2 (5 строк, 2 столбца) для вывода результатов регрессионной статистики. 3) Активизируйте Мастер функций: в главном меню выберете Формулы / Вставить функцию. 4) В окне Категория выберете Статистические, в окне функция – ЛИНЕЙН. Значение коэффициента b Значение коэффициента a Стандартная ошибка b Стандартная ошибка a Коэффициент детерминации R 2 Стандартная ошибка y F-статистика Число степеней свободы df Регрессионная сумма квадратов Остаточная сумма квадратов Рисунок 4 Результат вычисления функции ЛИНЕЙН Получили уровнение регрессии: Делаем вывод: С увеличением среднедушевого прожиточного минимума на 1 руб. Среднедневная заработная плата возрастает в среднем на 0,92 руб.

Коэффициент детерминации означает, что 52% вариации заработной платы (у) объясняется вариацией фактора х – среднедушевого прожиточного минимума, а 48% - действием других факторов, не включённых в модель. По вычисленному коэффициенту детерминации можно рассчитать коэффициент корреляции:. Связь оценивается как тесная.

С помощью среднего (общего) коэффициента эластичности определим силу влияния фактора на результат. Для уравнения прямой средний (общий) коэффициент эластичности определим по формуле: Средние значения найдём, выделив область ячеек со значениями х, и выберем Формулы / Автосумма / Среднее, и то же самое произведём со значениями.

Все

Рисунок 5 Расчёт средних значений функции и аргумент Таким образом, при изменении среднедушевого прожиточного минимума на 1% от своего среднего значения среднедневная заработная плата изменится в среднем на 0,51%. С помощью инструмента анализа данных Регрессия можно получить: - результаты регрессионной статистики, - результаты дисперсионного анализа, - результаты доверительных интервалов, - остатки и графики подбора линии регрессии, - остатки и нормальную вероятность. Порядок действий следующий: 1) проверьте доступ к Пакету анализа. В главном меню последовательно выберите: Файл/Параметры/Надстройки. 2) В раскрывающемся списке Управление выберите пункт Надстройки Excel и нажмите кнопку Перейти.

3) В окне Надстройки установите флажок Пакет анализа, а затем нажмите кнопку ОК. Если Пакет анализа отсутствует в списке поля Доступные надстройки, нажмите кнопку Обзор, чтобы выполнить поиск. Если выводится сообщение о том, что пакет анализа не установлен на компьютере, нажмите кнопку Да, чтобы установить его. 4) В главном меню последовательно выберите: Данные / Анализ данных / Инструменты анализа / Регрессия, а затем нажмите кнопку ОК. 5) Заполните диалоговое окно ввода данных и параметров вывода: Входной интервал Y – диапазон, содержащий данные результативного признака; Входной интервал X – диапазон, содержащий данные факторного признака; Метки – флажок, который указывает, содержит ли первая строка названия столбцов или нет; Константа – ноль – флажок, указывающий на наличие или отсутствие свободного члена в уравнении; Выходной интервал – достаточно указать левую верхнюю ячейку будущего диапазона; 6) Новый рабочий лист – можно задать произвольное имя нового листа.

Затем нажмите кнопку ОК. Рисунок 6 Диалоговое окно ввода параметров инструмента Регрессия Результаты регрессионного анализа для данных задачи представлены на рисунке 7.

Рисунок 7 Результат применения инструмента регрессия 5. Оценим с помощью средней ошибки аппроксимации качество уравнений. Воспользуемся результатами регрессионного анализа представленного на Рисунке 8.

Рисунок 8 Результат применения инструмента регрессия «Вывод остатка» Составим новую таблицу как показано на рисунке 9. В графе С рассчитаем относительную ошибку аппроксимации по формуле: Рисунок 9 Расчёт средней ошибки аппроксимации Средняя ошибка аппроксимации рассчитывается по формуле: Качество построенной модели оценивается как хорошее, так как не превышает 8 – 10%. Из таблицы с регрессионной статистикой (Рисунок 4) выпишем фактическое значение F-критерия Фишера: Поскольку при 5%-ном уровне значимости, то можно сделать вывод о значимости уравнения регрессии (связь доказана). Оценку статистической значимости параметров регрессии проведём с помощью t-статистики Стьюдента и путём расчёта доверительного интервала каждого из показателей. Выдвигаем гипотезу Н 0 о статистически незначимом отличии показателей от нуля:.

Для числа степеней свободы На рисунке 7 имеются фактические значения t-статистики: t-критерий для коэффициента корреляции можно рассчитать двумя способами: I способ: где – случайная ошибка коэффициента корреляции. Данные для расчёта возьмём из таблицы на Рисунке 7. II способ: Фактические значения t-статистики превосходят табличные значения: Поэтому гипотеза Н 0 отклоняется, то есть параметры регрессии и коэффициент корреляции не случайно отличаются от нуля, а статистически значимы.

Доверительный интервал для параметра a определяется как Для параметра a 95%-ные границы как показано на рисунке 7 составили: Доверительный интервал для коэффициента регрессии определяется как Для коэффициента регрессии b 95%-ные границы как показано на рисунке 7 составили: Анализ верхней и нижней границ доверительных интервалов приводит к выводу о том, что с вероятностью параметры a и b, находясь в указанных границах, не принимают нулевых значений, т.е. Не являются статистически незначимыми и существенно отличны от нуля. Инструкция пользователя интерактивной доской legamaster. Полученные оценки уравнения регрессии позволяют использовать его для прогноза. Если прогнозное значение прожиточного минимума составит: Тогда прогнозное значение прожиточного минимума составит: Ошибку прогноза рассчитаем по формуле: где Дисперсию посчитаем также с помощью ППП Excel. Для этого: 1) Активизируйте Мастер функций: в главном меню выберете Формулы / Вставить функцию.

2) В окне Категория выберете Статистические, в окне функция – ДИСП.Г. Щёлкните по кнопке ОК. 3) Заполните диапазон, содержащий числовые данные факторного признака. Рисунок 10 Расчёт дисперсии Получили значение дисперсии Для подсчёта остаточной дисперсии на одну степень свободы воспользуемся результатами дисперсионного анализа как показано на Рисунке 7. Доверительные интервалы прогноза индивидуальных значений у при с вероятностью 0,95 определяются выражением: Интервал достаточно широк, прежде всего, за счёт малого объёма наблюдений.

Раскрывающийся Список В Excel

В целом выполненный прогноз среднемесячной заработной платы оказался надёжным. Условие задачи взято из: Практикум по эконометрике: Учеб. Пособие / И.И.

Елисеева, С.В. Курышева, Н.М. Гордеенко и др.; Под ред.

– М.: Финансы и статистика, 2003. – 192 с.: ил.